Characterization of the Unit Ball in C Among Complex Manifolds of Dimension n

نویسنده

  • A. V. Isaev
چکیده

For a complex manifold M denote by Aut(M) the group of holomorphic automorphisms of M . Equipped with the compact-open topology, Aut(M) is a topological group. We are interested in characterizing complex manifolds by their automorphism groups. One manifold that has been enjoying much attention in this respect is the unit ball B ⊂ C for n ≥ 2. Starting with the famous theorems of Wong [W] and Rosay [R] many results characterizing B in terms of its automorphism group have been obtained. We mention proofs of Rosay’s theorem by means of invariant metrics [Kl], by means of scaling [P], by means of analyzing the structure of the ring of holomorphic functions [KK2], as well as extensions of the theorem to the case of unbounded domains [E], domains in complex manifolds [GKK] and domains (both bounded and unbounded) in infinitedimensional complex space [KK1], [BGK], [KM]. Rosay’s theorem implies, in particular, that a bounded homogeneous domain in C with C-smooth boundary is biholomorphically equivalent to B. A characterization result similar in spirit, but utilizing only the isotropy subgroup of a point in a complex manifold was obtained in [GK]. More information on results of this kind can be found in the survey [IKra1]. Among Kobayashi-hyperbolic manifolds, B can also be characterized as the manifold whose automorphism group has the largest dimension. Namely, if a connected complex manifold M of dimension n is hyperbolic, Aut(M)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parabolic starlike mappings of the unit ball $B^n$

Let $f$ be a locally univalent function on the unit disk $U$. We consider the normalized extensions of $f$ to the Euclidean unit ball $B^nsubseteqmathbb{C}^n$ given by $$Phi_{n,gamma}(f)(z)=left(f(z_1),(f'(z_1))^gammahat{z}right),$$  where $gammain[0,1/2]$, $z=(z_1,hat{z})in B^n$ and $$Psi_{n,beta}(f)(z)=left(f(z_1),(frac{f(z_1)}{z_1})^betahat{z}right),$$ in which $betain[0,1]$, $f(z_1)neq 0$ a...

متن کامل

Synthesis, Characterization, and Crystal Structure of a New Coordination Polymer, {[Ba2(Hpydc)2(pydc)(H20)31.H20.(112P3110}n

The reaction of barium chloride with 2, 6-pyridinedicarboxylic acid in water led to the formation of a novelpolymeric complex formulated as {[Ba2(Hpydc)2(pydc)(H20)3].H20.(H2pydc)}.(I). The crystal structure of (I)was characterized by single crystal X-ray diffraction method. The complex was crystallized in the monoclinicsystem with space group P2/c, with four molecule in unit-cell, e.g Z=4. The...

متن کامل

Hyperbolic Manifolds of Dimension n with Automorphism Group of Dimension

We consider complex Kobayashi-hyperbolic manifolds of dimension n ≥ 2 for which the dimension of the group of holomorphic au-tomorphisms is equal to n 2 − 1. We give a complete classification of such manifolds for n ≥ 3 and discuss several examples for n = 2. 0 Introduction Let M be a connected complex manifold and Aut(M) the group of holomor-phic automorphisms of M. If M is Kobayashi-hyperboli...

متن کامل

ay 2 00 5 Hyperbolic Manifolds of Dimension n with Automorphism Group of Dimension

We consider complex Kobayashi-hyperbolic manifolds of dimension n ≥ 2 for which the dimension of the group of holomorphic au-tomorphisms is equal to n 2 − 1. We give a complete classification of such manifolds for n ≥ 3 and discuss several examples for n = 2. 0 Introduction Let M be a connected complex manifold and Aut(M) the group of holomor-phic automorphisms of M. If M is Kobayashi-hyperboli...

متن کامل

Manifolds of Dimension n with Automorphism Group of Dimension

We consider complex Kobayashi-hyperbolic manifolds of dimension n ≥ 2 for which the dimension of the group of holomorphic au-tomorphisms is equal to n 2 − 1. We give a complete classification of such manifolds for n ≥ 3 and discuss several examples for n = 2. 0 Introduction Let M be a connected complex manifold and Aut(M) the group of holomor-phic automorphisms of M. If M is Kobayashi-hyperboli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004